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Abstract

State-of-the-art supervised local descriptor learning
methods heavily rely on accurately labelled patches for
training. However, since the process of labelling patches is
laborious and inefficient, supervised training is limited by
the availability and scale of training datasets. In compar-
ison, unsupervised learning does not require burdensome
data labelling; thus it is not restricted to a specific domain.
Furthermore, extracting patches from training images in-
volves minimal effort. Nevertheless, most of the existing
unsupervised learning based methods are inherently infe-
rior to the handcrafted local descriptors, such as the Scale-
Invariant Feature Transform (SIFT).

In this paper, we aim to leverage unlabelled data to learn
descriptors for image patches by a deep convolutional neu-
ral network. We introduce a Relative Distance Ranking
Loss (RDRL) that measures the deviation of a generated
ranking order of patch similarities against a reference one.
Specifically, our approach yields a patch similarity ranking
based on the learned embedding of a neural network, and
the ranking mechanism minimizes the proposed RDRL by
mimicking a reference similarity ranking based on a compe-
tent handcrafted feature (i.e., SIFT). To our advantage, after
the training process, our network is not only able to mea-
sure the patch similarity but also able to outperform SIFT
by a large margin on several commonly used benchmark
datasets as demonstrated in our extensive experiments.

1. Introduction
Obtaining a robust descriptor for local image patches is

an essential task in many computer vision applications in-
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nologies

Figure 1. We illustrate the motivation of our Relative Distance
Ranking Loss (RDRL). Handcrafted features are used to establish
a reference ranking of patch similarity. Our method mimics this
ranking without enforcing any further constraints on the learned
distances. Note that all patches are unlabelled.

cluding image registration, simultaneous localization and
mapping (SLAM) and large-scale 3D reconstruction. To
this end, widely popular descriptors, such as scale-invariant
feature transform (SIFT) [29] and speed-up robust features
(SURF) [5], employ a set of handcrafted spatial filters and
ad-hoc operations to interpret local patch patterns into vec-
torized representations. However, such filters and nonlinear
operations are often empirically determined based on hu-
man experience. Handcrafted features may not adequately
and fully express the useful information available in image
patches, thus restricting their performance.

To strengthen the representation capacity of handcrafted
features, supervised learning methods (in particular, boost-
ing and kernel-based approaches [41, 6, 49, 44, 17]) aim
at obtaining more discriminative feature representations
by leveraging the available labelled training data. These
approaches are built on top of handcrafted features and
designed to learn a mapping function (often a nonlinear
one) that allows features to be easily separated in high-
dimensional spaces. However, deriving effective and com-
putationally feasible mapping functions is not a straightfor-

1



ward process, and still remains an open problem.
As an alternative, deep supervised learning based meth-

ods [18, 47, 30, 58] do not require users to define hand-
crafted features and nonlinear mapping functions. Instead,
they learn image patch representations in an end-to-end
fashion via neural networks by imposing a similarity metric
on local image patches, which is intended to be invariant
to image transformations. Unfortunately, deep supervised
learning based methods require a vast amount of labelled
data for training. For instance, patches need to be captured
in different illumination conditions and views.

Unlike supervised learning, unsupervised methods draw
inferences from datasets without relying on labelled data.
Such methods have been successfully incorporated into
high-level tasks such as clustering [10, 20, 55], data re-
trieval [38, 35] and image generation [16, 36, 23]. Still, to
the best of our knowledge, learning representations for low-
level local image patches in an unsupervised fashion has
not been thoroughly investigated. Using an unsupervised
approach for local patches is also preferable; extracting a
large number of patches from images can be done with min-
imal effort since this operation does not require burdensome
manual annotations. State-of-the-art unsupervised learning
methods primarily focus on extracting low-level features
driven by optimizing either a quantization error loss [27, 13]
or a generative adversarial loss [60]. However, these loss
functions do not directly evaluate the affinity between im-
age patches. Consequently, their existing applications to
patch matching related tasks have not outperformed tradi-
tional handcrafted features yet.

In this paper, we introduce a new loss function, called
Relative Distance Ranking Loss (RDRL), to evaluate the
patch similarity directly in the objective function of a con-
volutional neural network. We first employ a handcrafted
feature descriptor (i.e., SIFT) to obtain a relative distance
ranking between patches as a reference, such as ”patch X is
more visually similar to patch Y than X is to Z“, where X,Y
and Z are randomly chosen unlabelled local patches. These
relative rankings coming from the handcrafted features are a
suitable indicator of similarity, since they can be considered
as a proxy for visual appearance. However, handcrafted fea-
tures rely on user-defined spatial filters to extract local in-
formation. Hence, they are limited by the types and ranges
of filters. Our main idea is that by using the first level of
granularity that comes from the handcrafted features and a
process of learning filters inside a convolutional neural net-
work, we can obtain a better feature descriptor in an unsu-
pervised manner, i.e., without using pairs of positive and
negative patches during training.

To achieve this goal, we rank the similarities between
the features generated by our network and compare our es-
timated rankings with the reference rankings as shown in
Fig. 1. In other words, our network learns to rank in ac-

cordance with the relative distance rankings provided by
a handcrafted descriptor so as to generate discriminative
features for local image patches. Our method only uses
SIFT to establish the reference relative distance rankings,
yet it can significantly outperform SIFT on standard bench-
marks [54, 2] after training. We conclude that combining
the feature extraction power of convolutional networks with
our RDRL significantly boosts the performance of the ref-
erence handcrafted features without requiring any labelled
data.

In addition, we apply a direct binarization to our learned
descriptors to derive compact descriptors. As demon-
strated in our experiments, the binarized descriptors not
only achieve state-of-the-art performance but also retain
much shorter code lengths. This phenomenon implies that
our network extracts even more discriminative features than
the conventional handcrafted features, and the new loss
function is suitable for learning local image descriptors in
an unsupervised manner.

Overall, the contributions of this paper are in four as-
pects:

• We present an unsupervised learning method to gen-
erate discriminative features for local image patches.
Our algorithm achieves 43.87% and 47.83% improve-
ments on patch matching performance over the state-
of-the-art handcrafted features (i.e., SIFT) and unsu-
pervised learning based methods on the UBC bench-
mark, respectively.

• We introduce a novel objective function, Relative Dis-
tance Ranking Loss (RDRL), for training our convo-
lutional network. Since RDRL is designed to measure
the similarity between local patches directly, our net-
work is suitable for patch matching tasks.

• To the best of our knowledge, our method is the first at-
tempt to learn local descriptor networks by leveraging
handcrafted features in an unsupervised fashion.

• More importantly, by employing RDRL our network
can outperform the reference handcrafted features.
This rather ”counter-intuitive” phenomenon has not
been noticed or explored by previous unsupervised de-
scriptor learning works, and we believe that our results
would motivate other vision tasks.

2. Related Works
2.1. Handcrafted Local Features

The evolution of local descriptors has achieved remark-
able progress over the past three decades, including differ-
ential filter based [24], moment invariant based [52], and
histograms of gradients based features, such as HOG [11],
LBP [31], DAISY [54], SIFT [29] and SURF [5]. We refer
the readers to the comprehensive literature survey [28].



Figure 2. The pipeline of our proposed network. Unlike most re-
cent descriptor learning methods, our network takes an unlabelled
triplet of patches to generate a relative distance ranking, and aims
to match the generated distance ranking to the reference ranking
which is computed using handcrafted features.

In order to achieve more compact and efficient descrip-
tors, binary descriptors also gain a great amount of atten-
tion. BRIEF [8] exploits randomized intensity comparison
to generate binary descriptors. ORB [37] maximizes the
variance across training patches by selecting uncorrelated
intensity tests, while BRISK [25] optimizes BRIEF by us-
ing decision trees. FREAK [1] constructs a cascade of bi-
nary strings by comparing image intensities with a retinal
sampling pattern.

2.2. Supervised Local Descriptor Learning

To achieve more discriminative features, some works
[6, 7, 46, 44, 42] simultaneously minimize intra-class and
maximize inter-class distances by exploiting discriminative
projections. D-BRIEF [51] adapts the inter and intra class
distance objectives to binary descriptors. BinBoost [50] ap-
plies boosting to learn a set of binary hash functions while
[4] presents an online learned binary descriptor.

Driven by the success of deep neural networks, CNN-
based descriptors [15, 43, 48] achieve impressive results
by exploiting large-scale labelled data. This demonstrates
the power of feature extraction and representation of CNNs.
Recently, end-to-end local descriptor learning methods have
been developed by employing the architecture of Siamese
networks and triplet or contrastive losses [18, 57, 43, 3, 30],
while L2Net [47] employs Euclidean distance as a similar-
ity metric to learn descriptors. Nevertheless, their outstand-
ing performance is restricted to the training domains and
those methods may be also limited due to lack of sufficient
labelled data.

2.3. Unsupervised Local Descriptor Learning

Unlike supervised methods, unsupervised deep learning
based methods [27, 14, 38, 13, 60] are less domain-specific
and do not need to label any data. Thus, unsupervised learn-
ing becomes especially important where labelled data are
difficult to obtain, for example, medical imaging and hyper-
spectral imaging.

Previous work [33] trains a Gaussian Restricted Boltz-
mann Machine (GRBM) in an unsupervised way and uses
the extracted features from the network as local descrip-
tors. Similarly, [34] presents unsupervised patch descrip-
tors based on a convolutional kernel network. However,
the network needs to be carefully optimized in a layerwise
manner. Deep Hashing (DH) [14] employs a neural net-
work as an encoding function to find a binary representation
that minimizes the quantization loss while maximizing the
entropy of bit values. Furthermore, DH takes the features
of input images extracted by handcrafted descriptors, such
as GIST [32], as its inputs. DeepBit [27] replaces hand-
crafted descriptors with a pretrained VGG network [45]
to extract image features, and further improves its perfor-
mance with data augmentation. In order to reduce quanti-
zation losses, DBD-MQ [13] reformulates binarization as a
multi-quantization task and solves it by a K-AutoEncoders
network. BinGAN [60] employs the framework of gener-
ative adversarial networks [16, 36] to learn image features
and then binarizes the feature representations of the penul-
timate layer from its learned discriminator.

Above all, unsupervised learning based methods mainly
employ energy based objective functions, generative adver-
sarial losses, or quantization minimization losses to opti-
mize neural networks. However, those losses do not tackle
the patch matching problem directly and thus lead to sub-
optimal solutions.

3. Proposed Method
We propose an unsupervised local descriptor learning

network, which benefits from the advantages of both human
expertise and deep convolutional neural networks. Man-
ually designed filters, such as Gaussian or Gabor filters,
are the basis of various handcrafted features (e.g., SIFT or
SURF). Due to the simplicity of those filters, the feature ex-
traction ability of handcrafted features has been limited. On
the contrary, CNNs demonstrate their powerful feature ex-
traction ability, but it is challenging to design a suitable loss
function to learn a network for patch matching tasks in an
unsupervised manner. In our method, we employ a CNN to
extract features and exploit handcrafted features to provide
a reference ranking of patch similarity for optimizing our
network. The pipeline of our algorithm is shown in Fig. 2.

3.1. Relative Distance Ranking

In unsupervised descriptor learning, not only label in-
formation of patches is unknown but also the number of
patch clusters is numerous and there are few samples in each
cluster. Thus, clustering patches based on similarity is not
suitable. Furthermore, the absolute distance between two
unlabelled patches does not provide any clue for training
our network, e.g., whether the network should force these
two patches closer or not in the feature space. Choosing or



designing a proper distance metric becomes the key to the
success of learning a discriminative descriptor.

Motivated by relative distance comparison (RDC) [40],
widely used in supervised learning methods (such as triplet
loss), we propose a Relative Distance Ranking (RDR) met-
ric based on three patches for our unsupervised learning
method. Different from the work [40], where RDC is used
to maximize distances of non-matching pairs and minimize
distances of matching pairs, our metric only yields a rank-
ing order of patch similarity. Specifically, we randomly
choose three patches, e.g., xi, xj and xk, and feed them
into the network to obtain their representations, fi, fj and
fk. Note that the feature representations have been normal-
ized to unit vectors, and the distance between two patches
refers to the distance between the descriptors of those two
patches. Thus, we obtain two absolute distance values:

d(xi, xj)=d(fi, fj)=‖Φθ(xi)−Φθ(xj)‖2 =‖fi−fj‖2,
d(xi, xk)=d(fi, fk)=‖Φθ(xi)−Φθ(xk)‖2 =‖fi−fk‖2,

where Φ represents our local descriptor network and θ in-
dicates the parameters of the network. Note that, standard
triplet loss (i.e., max{0, µ+ d(xi, xj)− d(xi, xk)}, where
µ represents a margin) is not suitable to apply it in our
case, for instance, by pulling two randomly chosen patches
xi and xj closer, while pushing patch xk further away, be-
cause those unlabelled patches might come from either the
same or different classes. Instead, we define our RDR met-
ric as:{
d(xi, xj) < d(xi, xk), if xi is closer to xj than xk,
d(xi, xj) > d(xi, xk), if xi is closer to xk than xj .

(1)

As indicated in Eqn. 1, our RDR only evaluates the relative
relationship among three patches instead of the absolute dis-
tance between two patches.

3.2. Proposed Relative Distance Ranking Loss

Although RDR alleviates erroneous clustering and pro-
vides a metric for objective functions to optimize neural
networks, the objective functions still require a reference
affinity relationship among three patches xi, xj and xk.

Handcrafted local descriptors encode sophisticated hu-
man expertise and are designed for different tasks, such as
image registration, retrieval and classification, as well as
different domains, like medical imaging and hyperspectral
imaging. SIFT, one of robust handcrafted features, has been
widely used in many tasks, such as image matching [29],
image retrieval [59] and medical image registration [9].
Hence, we use SIFT features to provide our reference RDR
between patches.

However, it is possible that SIFT features may also en-
code two patches from different classes closer in the feature
space. Thus, taking inaccurate RDR estimation from SIFT

features into account, we impose a margin m on the refer-
ence relative distance between d(si, sj) = ‖si − sj‖2 and
d(si, sk) = ‖si − sk‖2, where si, sj and sk indicate the
SIFT features of the patches xi, xj and xk respectively. In
other words, d(si, sk) should be larger than d(si, sj) by a
margin m, or vice versa. By imposing a margin between
the reference relative distance, we obtain a more reliable
ranking order from SIFT features. Therefore, our proposed
relative distance ranking loss (RDRL) L is formulated as:
L(xi, xj , xk) =

I(d(si,sk)−d(si,sj)−m) [d(xi, xj)−d(xi, xk)]+

+ I(d(si,sj)−d(si,sk)−m) [d(xi, xk)−d(xi, xj)]+ ,
(2)

where [α]+ represents the hinge loss max{α, 0} and I(·)
is an indicator function, defined by I(α) = 1 if α > 0,
otherwise I(α) = 0.

According to Eqn. 2, when the RDR generated by our
neural network violates the reference RDR output by SIFT,
the RDRL will be back-propagated to update the network.
Furthermore, if the reference relative distance is smaller
than the margin, our method will not use the ranking infor-
mation of the sampled patches to update our network. Note
that the introduced margin m is different from the margin
µ in triplet losses [3, 30]. The margin µ forces the dis-
tances between inter-class samples to be larger than the dis-
tances between intra-class samples, while our margin m is
presented to mitigate the impact of erroneous rankings of
the handcrafted features.

3.3. Objective Function and Network Architecture

Section 3.2 describes, using a randomly chosen triplet of
patches, how to evaluate the loss function in Eqn. 2. In order
to make computation more efficient and improve the per-
formance of our network, we employ a strategy of selecting
triplet patches in the training phase. Inspired by the mining
strategy in [30], we construct a hard triplet for each patch in
a batch. Different from the hard mining strategy employed
in [30, 58], our hard triplets are selected by the SIFT fea-
ture extractor instead of our learned network. The details
of our mining strategy and hard triplet selection are further
explained in Sec. 3.5. After obtaining the training triplet
patches, the final objective of our network is expressed as:

LT =
1

N

∑
i,j,k

L(xi, xj , xk), (3)

where N represents the number of patches in a batch, and
the triplet patches (xi, xj , xk) refer to a hard triplet.

Similar to supervised learning based methods [47, 30,
58], we also aim to learn a lightweight local descriptor
network without leveraging pre-trained networks, such as
VGG [45] and ResNet [19]. Since pre-trained models are
trained on supervised tasks such as classification, it is hard
to tell whether the feature extraction ability of the networks



comes from their original tasks or our proposed RDRL.
Thus, we adopt the architecture from [47], which consists
of seven convolutional layers and is regularized with Batch
Normalization. To prevent from overfitting, we employ a
drop-out layer with a drop rate 0.1 before the last convolu-
tional layer. We apply the objective in Eqn. 3 to train our
network from scratch with randomly initialized weights.

3.4. Binarizing Local Image Descriptors

Binary local descriptors are desirable for many applica-
tions [8, 37, 27, 60], due to the low computational require-
ments and high memory efficiency for image retrieval and
matching. Since batch-normalization [21] is used as the
output layer, our descriptors have been normalized to zero
mean in every dimension. To achieve binary local descrip-
tors, we can directly binarize the real-valued local descrip-
tors generated by our network. Specifically, we apply the
function sign(·) to the real-valued descriptors and then map
the codes from {−1, 1} to {0, 1}. Note that, we do not de-
liberately design a loss function for optimizing binary de-
scriptors. As suggested in [47], if the real-value descriptors
are discriminative enough, their corresponding binary de-
scriptors should be discriminative as well. The performance
of binary descriptors also in turn reflects the discriminative
ability of real-valued descriptors.

3.5. Training Details

Unlike previous unsupervised methods [27, 13, 60],
which use each patch individually to optimize networks,
our approach employs unlabelled triplet patches to evalu-
ate RDR on both handcrafted features and deep features
extracted by our network. As mentioned in Sec. 3.2, spe-
cific triplets of patches might not be used to update our
network if their reference rankings do not satisfy the mar-
gin constraint. In order to reduce redundant computation,
we construct triplet patches by a mining strategy for our
RDRL in each training batch. We first extract SIFT features
si, i = 1, 2, ..., N on the training data in a batch, and then
calculate the distance matrixM between every two patches.
Given a patch xi, as an anchor patch, we first choose a patch
xj , which is the most similar patch to the anchor xi based
on M . Another patch xk, regarded as a hard neighbour, is
selected if its distance to the anchor xi is the smallest one
among the distances larger than the distance Mij between
si and sj with a margin m. Then we obtain a hard triplet
(xi, xj , xk).

Since our objective function and all the layers in the
network are differentiable, we employ the Adam opti-
mizer [22] to update the parameters θ of our network with a
learning rate 10−5 and the decay rates for the first and sec-
ond moment estimates are set to 0.9 and 0.99 respectively.

4. Experiments

We test our proposed method on three popular patch-
based benchmarks: UBC Phototour [54], HPatches [2] and
ETH dataset [39]. These benchmarks are used to evaluate
the patch matching performance. The inputs to the network
are gray-scale patches and are resized to 32× 32 pixels. To
reduce the impact of illumination changes, we normalize
each input patch by subtracting the mean value of its in-
tensities and then dividing by the standard deviation of the
intensities.

4.1. UBC Phototour

In UBC Phototour dataset [54], patches are extracted
from three image sequences: Liberty, Notredame and
Yosemite. Following the standard training/test configura-
tion, one of the sequences is used for training and the other
two are used for testing. Note that ground-truth label infor-
mation is not provided in training. We report patch match-
ing performance in terms of false positive rates at 95% re-
call (FPR@95).

Since SIFT [29] is used to provide the reference RDR
in our loss, we employ SIFT as our baseline method.
Four state-of-the-art unsupervised learning based binary de-
scriptors, BinGAN [60], DeepBit [27], DBD-MQ [13] and
Boosted SSC [41], are chosen to serve as our baselines. We
also compare handcrafted binary descriptors, BRISK [25],
BRIEF [8] and ORB [37], with our binarized descriptor
Ours bin. Another widely used real-valued handcrafted fea-
ture SURF [5] is also included for comparisons. Moreover,
we employ our network architecture to regress real-valued
SIFT features, marked as SIFT Reg, as another baseline.
Since DeepBit [27] exploits a pretrained VGG network [45]
(excluding the classifier part) to extract features, we include
pretrained VGG as a baseline. We also retrain BinGAN
to achieve its real-valued descriptors, marked as BinGAN†

(128 dimension) and BinGAN‡ (256 dimension).
As indicated in Tab. 1, our real-valued descriptors, de-

noted as Ours, outperform the state-of-the-art unsupervised
methods by a large margin of 11.87% on the average
FPR@95. Note that, among previous unsupervised methods
and handcrafted features, SIFT achieves the lowest errors.
Although our binary descriptors are directly binarized from
our real-valued descriptors without utilizing any specific bi-
narization regularization, they also attain superior perfor-
mance. Benefiting from our proposed RDRL, our network
is able to extract features from patches and cluster similar
patches more closely in the feature space.

4.2. HPatches

HPatches [2] is composed of over 2.5 million patches ex-
tracted from 116 image sequences, where the patches con-
tain different viewpoints and illuminations. According to



Table 1. Quantitative comparisons on the UBC Phototour dataset in terms of false positive rates at 95% true positives (FPR@95) across
all the splits of the training and testing configurations. Ours and Ours bin represent our learned real-valued and binary descriptors by
using SIFT to provide reference RDR, respectively. Ours† indicates our learned real-valued descriptors by using our learned network, i.e.,
Ours, to provide reference RDR.

Methods Train Liberty Notredame Yosemite Average
Test Notredame Yosemite Yosemite Liberty Notredame Liberty FPR@95%

Handcrafted descriptors

BRISK [25] 512 bits 74.88 73.21 73.21 79.36 74.88 79.36 75.81
BRIEF [8] 256 bits 51.13 52.18 52.18 56.30 51.13 56.30 53.20
ORB [37] 256 bits 42.80 45.10 45.10 50.90 42.80 50.90 46.27
SURF [5] 64 bytes 31.85 44.30 44.30 49.85 31.85 49.85 42.00
SIFT [29] 128 bytes 25.17 27.77 27.77 30.76 25.17 30.76 27.90

Binary unsupervised learning based descriptors

Boosted SSC [41] 128 bits 72.95 77.99 76.00 70.35 72.20 71.59 73.51
DeepBit [27] 256 bits 26.66 57.61 63.68 32.06 29.60 34.41 40.67

DBD-MQ [13] 256 bits 25.78 57.15 57.24 31.10 27.20 33.11 38.59
BinGAN [60] 128 bits 27.24 50.48 39.44 27.92 32.72 39.44 36.21

BinGAN? [60] 256 bits 23.20 49.48 44.72 24.44 21.44 33.64 32.82
Ours bin 128 bits 20.96 23.20 23.23 27.59 20.79 29.25 24.17

Real-valued unsupervised learning based descriptors

BinGAN† [60] 128 bytes 27.24 54.56 45.68 24.72 41.76 48.92 40.48
SIFT Reg 128 bytes 39.29 29.45 41.38 51.42 30.29 41.21 38.84
VGG [45] 512 bytes 27.56 59.07 59.07 29.85 27.56 29.85 38.83

BinGAN‡ [60] 256 bytes 24.60 48.12 45.72 21.92 22.72 36.48 33.26
mcRBM [33] 512 bytes 25.10 34.50 33.00 34.00 22.30 31.20 30.02

Ours 128 bytes 13.04 17.09 15.17 19.70 12.15 19.05 16.03
Ours† 128 bytes 12.56 16.22 14.92 19.65 11.70 18.92 15.66

Figure 3. Results on HPatches dataset [2]. All the results are evaluated on the test set of the “a” split.

the amount of geometric noise, the test cases are grouped
into different levels of difficulty, easy, hard, and tough.
Three tasks are evaluated in ascending order of difficulty:
patch verification, patch retrieval, and image matching.

In this experiment, we employ four handcrafted features
as baselines: SIFT, ORB, BRIEF and Normalized Cross
Correlation (NCC) [26]. We also apply unsupervised deep
learning based methods BinGAN and its real-valued vari-
ant BinGAN† as our baselines. For a fair comparison, we
use their 128-dimensional descriptors as baselines since the
code length of our learned descriptors is 128. Since the pre-
trained VGG achieves better results than DeepBit on the
UBC Phototour benchmark, we use the pretrained VGG-
net for comparison. Notice that the length of the VGG de-
scriptor (512 bytes) is 4 times larger than our descriptors.
Moreover, SIFT-Reg serves as another baseline.

As shown in Fig. 3, our real-valued descriptors outper-
form the state-of-the-art unsupervised methods for all the
three tasks. Furthermore, our method is able to use the
shortest code length to achieve the best performance. This
also indicates that by exploiting our proposed RDRL our
network is able to cluster patches effectively. Addition-
ally, our binary descriptors outperform the unsupervised
learning-based and handcrafted binary descriptors.

4.3. ETH Dataset
ETH benchmark [39] focuses on evaluating descriptors

for a Structure from Motion (SfM) task. This benchmark in-
vestigates the performance of different descriptors in terms
of building a 3D model from a set of 2D images. Specifi-
cally, the SfM performance of a method is measured by the
number of registered images, reconstructed sparse points,
image observations, mean track length, mean reprojection



Table 2. Evaluation results on ETH benchmark for SfM. The red color indicates the best performance.
# Images # Reg. # Sparse Pts # Observ. Track Length Reproj. Error # Inlier Matches

Fountain SIFT 11 11 15.6K 74.8K 4.77 0.40 138.9K
TFeat 11 14.2K 67.5K 4.73 0.37 113.9K
LIFT 11 6.0K 28.2K 4.71 0.58 52.2K
Ours 11 15.8K 75.7K 4.79 0.41 144.0K

South Building SIFT 128 128 150K 754K 5.02 0.54 2677K
TFeat 128 102K 604K 5.91 0.51 1751K
LIFT 128 42K 233K 5.47 0.73 711K
Ours 128 153K 767K 5.02 0.54 2728K

Gendarmenmarkt SIFT 1463 1098 612K 2207K 3.60 0.72 90M
TFeat 902 280K 1324K 4.72 0.69 15M
LIFT 959 143K 819K 5.73 0.84 5M
Ours 1118 641K 2335K 3.63 0.72 90M

(a) Impact of labelled data (b) Impact of mining strategies (c) Impact of margins (d) Performance wrt. dimensions
Figure 4. Ablation study of our method on UBC Phototour benchmark. For all the cases, we train our network on the Liberty dataset. We
either use Notredame for validation and test on Yosemite or vice versa.

error and inlier matches.
In this experiment, we compare our descriptor with SIFT

to demonstrate the effectiveness of our RDRL. We also in-
clude the performance of two supervised learning based de-
scriptors provided in [39]1, i.e., TFeat [3] and LIFT [56].

Table 2 indicates the evaluation results of the 3D recon-
struction. Our method outperforms other methods in terms
of metrics related to the density of the reconstructed 3D
model, i.e., the number of registered images, the number
of registered sparse points, the number of observations and
the number of inlier matches. In most cases, the tracking
length of our method is longer than SIFT as well. Further-
more, since the reprojection errors are less than 1 pixel for
all descriptors, this metric may not reflect performance dif-
ferences between descriptors in practice. Overall, by em-
ploying RDRL, our method significantly improves the per-
formance of SIFT and is also competitive with supervised
methods in the SfM task.

4.4. Discussion

Comparison with Supervised Descriptors: Since our
method is trained on unlabelled patches, it would be unfair
to compare our method with supervised ones. However, we
illustrate how the number of labelled patch pairs affects the
performance of the supervised methods in Fig. 4(a). Specif-
ically, we train a supervised method (i.e., Hardnet [30]) on
Liberty given different amount of labelled training pairs and
test it on Notredame. As shown in Fig. 4(a), when the num-
ber of labelled patch pairs is less than 104, our method even

1The results are provided by the authors and the full evaluation is pro-
vided in the supplementary material.

outperforms [30] since [30] suffers overfitting. This further
demonstrates that our method is very useful when labelled
data is unavailable.
Impact of Mining Strategies: To demonstrate the effec-
tiveness of our mining strategy, we also compare two other
possible mining strategies, as shown in Fig. 4(b). In our
method, we use a handcrafted feature, SIFT, to find the most
similar patch to the given patch and their hard neighbour in
the feature space and then construct the training triplet, with
the validation error curve being shown in red in Fig. 4(b).
We also illustrate that the results of using our learned net-
work to mine the training triplet on the fly, as shown in the
green curve in Fig. 4(b). In this case, the network fails to
cluster all the patches much closer while pushing dissimi-
lar ones apart. As illustrated by the validation curve, the
network diverges as the training progresses. We opt to use
all the patches whose distances are larger than the distance
between the anchor patch and its nearest neighbour by a
margin m, in a batch to construct training triplets. In this
way, the updating direction of the given patch is averaged
by all the relative distances ranking losses. Regarding noisy
RDR estimation of handcrafted features, the averaging up-
dating direction does not reduce the training loss, as shown
in the blue curve in Fig. 4(b). Figure 4(b) also implies that
training our unsupervised network is nontrivial.
Selection of Distance Margins: We employ a margin in
our RDRL to alleviate the impact of inaccurate estimation
of handcrafted features. Figure. 4(c) shows the impact of
different margins on the validation errors. When the margin
is set to 0.05, our validation curve obtains the lowest error.
Hence, we set the margin to 0.05. We also observe that



(a) Validation curves (b) Test performance
Figure 5. Performance impacted by increasing training patches.

Figure 6. Performance of our RDRL using different handcrafted
descriptors as references.

when the margin is set to 0.5, the validation errors are larger
than the others. This also implies that for a given patch
using all the other patches to construct training triplets is
not suitable, as illustrated in the blue curve in Fig. 4(b).
Descriptor Performance in Different Dimensions: As
visible in Fig. 4(d), the performance of our descriptors
varies as the dimension increases. We use Liberty as our
training dataset and Notredame and Yosemite as our valida-
tion and test datasets. For instance, we employ Yosemite as
our validation set and Notredame as our test set. The green
curve in Fig. 4(d) indicates the average FPRs in different di-
mensions when true positive rate (TPR) is 95%. When the
dimension of our real-valued descriptor is larger than 128,
the performance of our learned descriptors does not increase
significantly on the UBC benchmark. Therefore, we set the
dimension of our real-valued descriptor to 128.
Impact of Increasing the Training Dataset: Dataset aug-
mentation is a widely known technique to enhance the per-
formance in supervised methods, but it requires extra labo-
rious labelling effort. However, increasing the amount of
training images/patches can be regarded as “free” for unsu-
pervised learning methods. Therefore, we enlarge our train-
ing dataset by increasing the variety of training patches.
Due to the similarity between Liberty and Notredame, we
extend our training dataset Liberty with randomly sampled
patches from Yosemite and use Notredame as the validation
set. As shown in Fig. 5(a), by using both datasets our net-
work achieves a lower validation error rate compared with
only using one dataset, Liberty, in training. Moreover, our
descriptors also obtain higher matching performance on the
Yosemite dataset, as indicated in Fig. 5(b). Although some
patches from Yosemite appear in both the training and test-
ing phase, our network does not try to overfit the test dataset
since there are no ground-truth labels provided in training.
Learning from Different Handcrafted Features: We

demonstrate that using our SIFT based RDRL to train our
descriptor network, our network can achieve better perfor-
mance than our baseline handcrafted feature, SIFT. Nev-
ertheless, our RDRL is also able to improve other hand-
crafted features. To the best of our knowledge, SIFT is still
one of the best off-the-shelf handcrafted features and we re-
gard SIFT as a “Sophisticated” descriptor. Note that, some
state-of-the-art handcrafted features [12, 53] require the ex-
act scale information of the patches or may sample outside
patch regions to achieve their best performance, their per-
formance degrades dramatically if the above conditions are
not satisfied. For comparison, we also select BRIEF as a
“Simple” descriptor and NCC as a “Trival” descriptor. As
visible in Fig. 6, our RDRL can improve different levels
of handcrafted features. Furthermore, we use our descrip-
tor to provide reference RDR and then train our network
from scratch. As indicated in Tab. 1, we can further improve
the performance of our descriptor network by our proposed
RDRL, denoted by Ours†. However, using the descriptor
network Ours† to provide reference RDR, we train our net-
work again, and do not see significant improvement since
the distribution of the learned descriptors tends to be stable.

Outperforming SIFT: First, deep networks can represent
images more discriminatively than handcrafted features due
to their complex and various filters. Since our RDRL is de-
signed to measure patch similarity, the network can learn
more discriminative deep filters than the handcrafted filters
in SIFT. Thus, our network can represent patches more dis-
crminatively. Second, we use relative distance rankings in-
stead of absolute distances as our objective, and the abso-
lute distance between two patches estimated by SIFT can be
larger than the distance of our deep features, or vice verse.
Therefore, our network can achieve better patch matching
performance than SIFT.

5. Conclusion

We present an unsupervised local descriptor network to
generate real-valued feature descriptors by using our pro-
posed relative distance ranking loss. Our proposed loss
yields direct measurement of patch similarity, thereby gen-
erating more discriminative descriptors. Our method com-
bines the sophisticated human experience from handcrafted
features with the feature extraction power of deep neural
networks, and outperforms both handcrafted features and
unsupervised learning based methods.
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M. Pietikäinen. Deep learning for generic object detection:
A survey. arXiv preprint arXiv:1809.02165, 2018. 2

[29] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004. 1, 2, 4, 5, 6

[30] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Work-
ing hard to know your neighbor’s margins: Local descriptor
learning loss. In Advances in Neural Information Processing
Systems (NIPS), pages 4826–4837, 2017. 2, 3, 4, 7



[31] T. Ojala, M. Pietikainen, and D. Harwood. Performance eval-
uation of texture measures with classification based on kull-
back discrimination of distributions. In Proceedings of the
12th IAPR International Conference on Pattern Recognition,
volume 1, pages 582–585. IEEE, 1994. 2

[32] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International
Journal of Computer Vision, 42(3):145–175, 2001. 3

[33] C. Osendorfer, J. Bayer, S. Urban, and P. van der Smagt.
Unsupervised feature learning for low-level local image de-
scriptors. arXiv preprint arXiv:1301.2840, 2013. 3, 6

[34] M. Paulin, M. Douze, Z. Harchaoui, J. Mairal, F. Perronin,
and C. Schmid. Local convolutional features with unsuper-
vised training for image retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 91–99, 2015. 3
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